Mid-Chapter Quiz Lessons 9-1 through 9-3

RABBIT POPULATION For Exercises 1 and 2, use the following information. (Lesson 9-1)

Rabbits reproduce at a tremendous rate and their population increases exponentially in the absence of natural enemies. Suppose there were originally 65,000 rabbits in a region and two years later there are 2,500,000.

- Write an exponential function that could be used to model the rabbit population *y* in that region. Write the function in terms of *x*, the number of years since the original year.
- **2.** Assume that the rabbit population continued to grow at that rate. Estimate the rabbit population in that region seven years later.
- **3.** Determine whether 5(1.2)^{*x*} represents exponential *growth* or *decay*. Explain. (Lesson 9-1)
- **4. SAVINGS** Suppose you deposit \$500 in an account paying 4.5% interest compounded semiannually. Find the dollar value of the account rounded to the nearest penny after 10 years. (Lesson 9-1)

Evaluate each expression. (Lesson 9-2)

- **5.** $\log_8 16$ **6.** $\log_4 4^{15}$
- **7. MULTIPLE CHOICE** What is the value of *n* if $\log_3 3^{4n-1} = 11$? (Lesson 9-2)
 - **A** 3
 - **B** 4
 - **C** 6
 - **D** 12

Solve each equation or inequality. Check your solution. (Lessons 9-1 through 9-3)

8.
$$3^{4x} = 3^{3-x}$$

9. $3^{2n} \le \frac{1}{9}$
10. $3^{5x} \cdot 81^{1-x} = 9^{x-3}$
11. $49^x = 7^{x^2 - 15}$
12. $\log_2(x+6) > 5$
13. $\log_5(4x-1) = \log_5(3x+2)$

14. MULTIPLE CHOICE Find the value of *x* for $\log_2 (9x + 5) = 2 + \log_2 (x^2 - 1)$. (Lesson 9-3) **F** -0.4 **H** 1 **G** 0 **J** 3

HEALTH For Exercises 15–17, use the following information. (Lesson 9-3)

The pH of a person's blood is given by the function $pH = 6.1 + \log_{10} B - \log_{10} C$, where *B* is the concentration of bicarbonate, which is a base, in the blood, and *C* is the concentration of carbonic acid in the blood.

Substance	рН
Lemon juice	2.3
Milk	6.4
Baking soda	8.4
Ammonia	11.9
Drain cleaner	14.0

- **15.** Use the Quotient Property of Logarithms to simplify the formula for blood pH.
- **16.** Most people have a blood pH of 7.4. What is the approximate ratio of bicarbonate to carbonic acid for blood with this pH?
- **17.** If a person's ratio of bicarbonate to carbonic acid is 17.5:2.25, determine which substance has a pH closest to this person's blood.

ENERGY For Exercises 18–20, use the following information. (Lesson 9-3)

The energy *E* (in kilocalories per gram molecule) needed to transport a substance from the outside to the inside of a living cell is given by $E = 1.4(\log_{10} C_2 - \log_{10} C_1)$, where C_1 is the concentration of the substance outside the cell and C_2 is the concentration inside the cell.

- **18.** Express the value of *E* as one logarithm.
- **19.** Suppose the concentration of a substance inside the cell is twice the concentration outside the cell. How much energy is needed to transport the substance on the outside of the cell to the inside? (Use $\log_{10} 2 \approx 0.3010$.)
- **20.** Suppose the concentration of a substance inside the cell is four times the concentration outside the cell. How much energy is needed to transport the substance from the outside of the cell to the inside?